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Abstract

In several applications of NMR spectroscopy the user is interested only in the components lying in a small frequency band of the

spectrum. A frequency selective analysis deals precisely with this kind of NMR spectroscopy: parameter estimation of only those

spectroscopic components that lie in a preselected frequency band of the NMR data spectrum, with as little interference as possible

from the out-of-band components and in a computationally efficient way. In this paper we introduce a frequency-domain singular

value decomposition (SVD)-based method for frequency selective spectroscopy that is computationally simple, statistically accurate,

and which has a firm theoretical basis. To illustrate the good performance of the proposed method we present a number of nu-

merical examples for both simulated and in vitro NMR data.
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1. Introduction and problem formulation

We consider the following model commonly used for

NMR data:

yðtÞ ¼
Xm
k¼1

qkk
t
k þ �ðtÞ; kk ¼ e�akþixk ;

t ¼ 0; . . . ;N � 1

ð1Þ

where m denotes the number of components, (qk, ak, xk)

are the complex amplitude, damping and frequency of

the kth component (note that the sampling period has

been absorbed in ak and xk, for notational convenience),

�ðtÞ is a noise term and N denotes the number of

available samples. Both m and (qk, ak, xk) are unknown.

In some applications, such as metabolite imaging, it
would be too computationally intensive to estimate the

parameters of all components in Eq. (1). For this and
qThis work was partly supported by the Swedish Science Council.
* Corresponding author. Fax: +46-18-503611.

E-mail address: niclas.sandgren@it.uu.se (N. Sandgren).

1090-7807/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S1090-7807(03)00188-5
other reasons (see point (ii) below) we may be interested

in only a few components of Eq. (1) that lie in a pre-
specified frequency band comprising the following

Fourier frequencies:

2pk1
N

;
2pk2
N

; . . . ;
2pkM
N

� �
: ð2Þ

Here k1; . . . ; kM are M given integers. Usually k1; . . . ; kM
are consecutive integers (k2 ¼ k1 þ 1, k3 ¼ k2 þ 1, etc.),

however the method developed in the following does not

require them to be so and hence it can be applied even

when the interval in Eq. (2) contains several non-adja-

cent frequency bands. We assume that the number of

components of Eq. (1) lying in the frequency band of

Eq. (2), which we denote by

n6m ð3Þ
is given. If n was a priori unknown, it could be estimated
from the data either by counting the peaks of the spec-

trum of Eq. (1) that lie in the frequency band of Eq. (2)

or as the rank of a certain data matrix that will be in-

troduced later on (see Section 2).
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Our problem therefore is to estimate the parameters
of the (n) components of Eq. (1) that lie in the frequency

band in Eq. (2). Furthermore, we want to find a solution

to this frequency-selective estimation problem that has

the following properties.

(i) It is computationally efficient. In particular, the

computational complexity of such a solution should be

comparable with that of a standard SVD-based method

applied to a data model having the form of Eq. (1) but
with m ¼ n and N ¼ M .

(ii) It is statistically accurate. To be more specific

about this aspect we will split the discussion in two

parts. From a theoretical standpoint, estimating n < m
components of Eq. (1) (in the presence of the remain-

ing components and noise) cannot produce more ac-

curate estimates than estimating all m components.

Even so, for a good frequency-selective method the
aforementioned degradation of the theoretical statisti-

cal accuracy should not be significant. On the other

hand, from a practical standpoint, a sound frequency-

selective method may give better performance than a

non-frequency-selective counterpart that deals with all

components in Eq. (1). This is so because some com-

ponents in Eq. (1) that do not belong to Eq. (2) (such

as the solvent) may not be well described by a damped
sinusoid model; consequently treating such components

as uninteresting interferences and eliminating them

from the model (see the next section) may improve the

estimation accuracy of the components of interest. In

addition, for a subspace based method, when prior

knowledge is available about the components of in-

terest, this can be more easily taken into consideration

(to enhance the estimation accuracy) in an approach
that eliminates the nuisance components from the

model and deals only with the components of interest

(see, e.g., [1,2]).

In the next section we introduce a frequency-selective

SVD-based method that possesses the above two desir-

able features. Several methods have been developed in

the past for frequency-selective parameter estimation

(see, e.g., [3–8,15,16] and the references therein). Of the
cited methods, the so-called filter diagonalization

method (FDM) of [15,16] is the closest in spirit to the

method proposed in the present paper. As shown in the

next section our proposed method can be viewed as a

frequency-domain implementation of ESPRIT (see, e.g.,

[10]). Somewhat similarly, FDM can be viewed as a

frequency-domain implementation of the related state-

space and matrix pencil methods of spectral analysis,
which are well known in the signal processing commu-

nity (see, e.g., [17–19]). We leave a detailed comparison

between FDM and the method proposed herein for a

future paper.

In Section 2 we develop a frequency-domain SVD-

based method that is computationally simple, statisti-

cally accurate and has a sound theoretical basis. In
Section 3 we present a number of numerical examples to
illustrate the type of performance that can be achieved

by using our approach. We will compare the perfor-

mance of our frequency-selective method with that of

the method in [6].
2. Frequency-domain SVD-based method

The main source of inspiration for our frequency-

domain SVD-based approach, which we will designate

by the acronym SELF-SVD (the abbreviation SELF

indicates the fact that the method is usable in a selected
frequency band), was [9] where a frequency-domain

method for undamped sinusoidal models was proposed.

However, the derivation of SELF-SVD presented in

what follows (for the more general case of the damped

sinusoids-in-noise model in Eq. (1)) is simpler and more

self-contained than that in [9].

The following notation will be frequently used in the

paper:

wk ¼ ei2pk=N ; k ¼ 0; . . . ;N � 1; ð4Þ

uk ¼ ½wk � � �wS
k �

T
; ð5Þ

vk ¼ ½1wk � � �wN�1
k �T ðthe kth Fourier vectorÞ; ð6Þ

y ¼ ½yð0Þ � � � yðN � 1Þ�T ðthe data vectorÞ; ð7Þ

Yk ¼ v�ky k ¼ 0; . . . ;N � 1 ðthe FFT sequenceÞ; ð8Þ

aðkkÞ ¼ ½kk � � � kSk �
T
; ð9Þ

bðkkÞ¼ ½1kk � � �kN�1
k �T ð10Þ

ðthe Vandermonde vector associated with the kth modeÞ:

Hereafter S is a user parameter whose choice is dis-
cussed later on, and � denotes the conjugate transpose.

In Appendix A we show that the following key equa-

tion involving the frequency-domain data fYkg holds

true:

ukYk ¼ ½aðk1Þ � � � aðkmÞ�
q1v

�
kbðk1Þ
..
.

qmv
�
kbðkmÞ

2
64

3
75þ Cuk þ ukek;

ð11Þ
where fekg is similarly defined to fYkg, that is the se-
quence fekg is the FFT of the noise f�ðtÞgN�1

t¼0 , and C is

an S � S matrix defined in Eq. (A.6) of Appendix A (the

definition of C is not repeated here because it has no

importance for what follows, as will become clear

shortly).

In the following we let fkkgnk¼1 denote the modes of

Eq. (1) whose frequencies lie in Eq. (2). To separate the

terms in Eq. (11) corresponding to the modes of interest
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from those associated with the nuisance modes we make
use of the following notation:

A ¼ ½aðk1Þ � � � aðknÞ�; ð12Þ

xk ¼
q1v

�
kbðk1Þ
..
.

qnv
�
kbðknÞ

2
64

3
75 ð13Þ

for the modes of interest whose frequencies belong to

the interval in Eq. (2), and similarly ~AA and ~xxk for the

other modes. Finally, to write Eq. (11) for k ¼ k1; . . . ; kM
in a compact matrix form we need the following addi-

tional notation:

Y ¼ ½uk1Yk1 � � � ukM YkM �; ð14Þ

U ¼ ½uk1 � � � ukM �; ð15Þ

X ¼ ½xk1 � � � xkM �; ð16Þ

and similarly for ~XX. Using this notation, we can write

Eq. (11) (for k ¼ k1; . . . ; kM ) as follows:

Y ¼ AXþ CUþ ~AA~XXþ e; ð17Þ

where the S �M matrix e is defined similarly to Y.

Next we assume that:

M P nþ S; ð18Þ
which does not introduce any restriction, as the user

parameter S can always be chosen to satisfy Eq. (18) (the
choice of S is discussed later on in this section). Under

Eq. (18) (in fact onlyM P S is required for this part), the

orthogonal projection matrix onto the null space of U is

given by

P?
U ¼ I�U�ðUU�Þ�1

U: ð19Þ

We will eliminate the second term in Eq. (17) by post-
multiplying this equation withP?

U (see below). However,

before doing so we make the following observations

about the third and fourth terms in Eq. (17).

(a) The elements of the noise term are much smaller

than the elements of AX. Indeed, it can be shown

that ek ¼ OðN1=2Þ (stochastically), whereas the order
of the elements of X is typically OðNÞ (note that for
this to hold the signal-to-noise ratio in the raw data,
see Eq. (1), need not be high).

(b) Similarly, assuming that the out-of-band compo-

nents are not much stronger than the components

in the band of interest and that the frequencies of

the former are not too close to the interval in Eq.

(2), the elements of ~XX are much smaller than the el-

ements of X.

(c) To understand what happens in the case that the as-
sumption we made in (b) above does not hold, let us

consider a generic out-of-band component ðq; kÞ.
The part of y corresponding to such a component
can be written as q bðkÞ. Hence the corresponding
part in ukYk is given by q uk½v�kbðkÞ� and, conse-

quently, the part of Y due to this generic component

would be
qU

v�k1bðkÞ 0

. .
.

0 v�kMbðkÞ

2
64

3
75: ð20Þ

Even if the frequency of k is relatively close to the band

of interest in Eq. (1), we may expect that v�kbðkÞ does not
vary significantly for k 2 ½k1; kM � (in other words, the

‘‘spectral tail’’ of the out-of-band component may well

have a small dynamic range in the interval of interest).

As a consequence, the matrix in Eq. (20) is approxi-

mately proportional to U and hence it will be attenuated

via the post-multiplication of it by P?
U (see below). A

similar argument shows that the noise term in Eq. (17)

also is attenuated by the post-multiplication of Eq. (17)
with P?

U .

It follows from the previous discussion (see Eq. (17)

and (a)–(c) above) that

YP?
U � AXP?

U : ð21Þ

Under Eq. (18) and some additional ‘‘regularity’’ con-

ditions it can be shown that (see [9] and references

therein for a proof of this type of result):

rankðXP?
U Þ ¼ n: ð22Þ

Hence, assuming that

SP n ð23Þ
(which is an easily satisfied condition), we have from

Eqs. (21) and (22) that:

effrankðYP?
U Þ ¼ n ð24Þ

and

A � WP; ð25Þ
where effrank stands for effective rank,

W ¼ the S � n matrix whose columns are the left

singular vectors of YP?
U associated with the n

largest singular values ð26Þ

and P is a nonsingular transformation matrix.
Our proposal for a frequency-selective spectroscopic

method relies on the results of Eqs. (24) and (25) above:

using Eq. (24) we can estimate n or, at least, verify an

assumed value for n; whereas using Eq. (25) we can es-

timate the modes of interest fkkgnk¼1 via a standard

SVD-based method (see, e.g., [10]); finally, once fkkg
have been estimated we can estimate fqkg

n
k¼1 (see be-

low). The steps of the proposed method are described in
more detail in the following.
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SELF-SVD method for frequency-selective NMR spec-

troscopy

Step 1. Apply an FFT algorithm to fyðtÞgN�1
t¼0 to

compute fYkgN�1
k¼0 . Determine the frequency band of in-

terest ½2pk1=N ; 2pkM=N � by the inspection of fYkg (pos-
sibly the band of interest is pre-specified), as well as the

value of n (possibly n can also be pre-specified).

Choose S in the interval:

S 2 M
3

� �
;

M
2

� �� �
; ð27Þ

where dxe denotes the integer part of x. This interval

for S is suggested by the previous experience with

SVD-based approaches (see, e.g., [10]) as well as our

empirical experience with SELF-SVD. In the numerical

examples we will use the lower limit in Eq. (27), viz.,

S ¼ dM=3e, to reduce the computational burden of

SELF-SVD.

Step 2. Compute P?
U ; this can be conveniently done

using the QR decomposition of U�,

U� ¼ ½ Q|{z}
S

Q|{z}
M�S

� R

0

� �gS
; Q�Q ¼ IM�S; ð28Þ

which gives

P?
U ¼ QQ�: ð29Þ

Next compute the matrix

Z ¼ YP?
U ð30Þ

and its singular value decomposition. Check (by the

inspection of the singular values) that the effective rank

of Z is equal to the value of n given by Step 1 (otherwise
adjust n accordingly). Build the S � nmatrixW from the

left singular vectors of Z associated with the n largest

singular values.

Step 3. Estimate fkkgnk¼1 from W by a standard SVD

method. We present a succinct derivation of such an
SVD-based method, for the reader less familiar with the

SVD approach. Let

Wu ¼ ½IS�1 0�W; ð31Þ

Wl ¼ ½0 IS�1�W; ð32Þ

and similarly for A. Observe from Eq. (25) that

WlP � Al ¼ Au

k1 0

. .
.

0 kn

2
64

3
75 � WuP

k1 0

. .
.

0 kn

2
64

3
75
ð33Þ

or, equivalently,

Wl � WuU; ð34Þ
where

U ¼ P

k1 0

. .
.

0 kn

2
64

3
75P�1: ð35Þ

Consequently, we can estimate U from Eq. (34) by the

least squares (LS) method:

ÛU ¼ ðW�
uWuÞ�1

W�
uWl ð36Þ

(alternatively we can use the total LS method (see, e.g.,

[11]) to estimate U), and then estimate fkkgnk¼1 as the

eigenvalues of ÛU (note from Eq. (35) that the eigen-

values of U are precisely given by fkkgnk¼1).

Step 4. Finally, we use the estimates of fkkg obtained

in the previous step and the APES method of [12] to es-

timate fqkgnk¼1 (the acronym APES stands for amplitude

and phase estimation). Note that there are several other

methods that could be used for amplitude estimation,
once fkkg have been estimated. Our choice of APES is

motivated by the fact that this method typically provides

the most accurate amplitude estimates of all methods of

which we are aware, at a reasonable computational cost

(see, e.g., [14]). In what follows, we present a brief review

of APES for the reader�s convenience.
Let

zðtÞ ¼ ½yðtÞ � � � yðt þ P � 1Þ�T; t ¼ 0; 1; . . . ; L� 1;

ð37Þ
where P > 1 is a user parameter (the choice of which will

be discussed in Section 3), and

L ¼ N � P þ 1: ð38Þ
Also, let hða;xÞ 2 CP�1 denote the coefficient vector of

an FIR filter (to be applied to fyðtÞg) which is such that:

(C1) the damped sinusoid fqeð�aþixÞtg passes undis-

torted through the filter; and
(C2) the filter output h�ða;xÞzðtÞ is as close as possible

in the LS sense to a damped sinusoid with the gi-

ven damping and frequency ða;xÞ and with an am-

plitude ðqÞ that minimizes the LS fitting error.

Let

sða;xÞ ¼ 1e�aþix � � � eð�aþixÞðP�1Þ� �T
: ð39Þ

Condition C1 is satisfied if and only if

h�ða;xÞsða;xÞ ¼ 1: ð40Þ

Condition C2 is satisfied, for given a and x, by mini-

mizing the following LS criterion (with respect to both

hða;xÞ and q)

XL

t¼1

h�ða;xÞzðtÞ
		 � qeð�aþixÞt		2 ð41Þ

subject to condition C1. The solution to Eq. (41) is given
by (see [12] and references therein)
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q̂qða;xÞ ¼ h�ða;xÞZða;xÞ; ð42Þ
where

Zða;xÞ ¼ 1

GðaÞ
XL

t¼1

zðtÞe�at½ �e�ixt; ð43Þ

GðaÞ ¼
XL

t¼1

e�2at ¼ e�2a e
�2aL � 1

e�2a � 1
; ð44Þ

hða;xÞ ¼ Q�1ða;xÞsða;xÞ
s�ða;xÞQ�1ða;xÞsða;xÞ

; ð45Þ

Qða;xÞ ¼ R� GðaÞZða;xÞZ�ða;xÞ; ð46Þ

R ¼
XL

t¼1

zðtÞz�ðtÞ: ð47Þ

The computation of the amplitude estimate(s) in Eq.

(42) concludes the description of the SELF-SVD algo-

rithm.

To end this section we remark on the fact that the
full-band SELF-SVD method, which uses M ¼ N , can

be shown to be equivalent to the standard time-domain

SVD method applied to the usual S � ðN � SÞ Hankel

data matrix. In our opinion this is a desirable feature of

any sound frequency-selective approach.
3. Numerical examples

3.1. Simulated data

The proposed SELF-SVD method will be compared
to the frequency-selective ER-filter (ER stands for

extraction and reduction of the spectral bandwidth)

method introduced in [6] and a standard time-domain

SVD method (HSVD) (see e.g., [10,13]). HSVD will also

be employed for the quantitation (i.e., parameter esti-

mation) of the size-reduced data sequence after ER-fil-

tering. The name we will use for the so-obtained

frequency-selective method is ERF-HSVD. A two peak
example is considered in detail to compare the estima-

tion accuracy of the three methods, the sensitivity to the

choice of frequency interval and the influence of a nui-

sance peak. The added noise is circular, white and

Gaussian distributed with standard deviation r. The

quality of the different parameter estimates is measured

as the relative root mean square error (RRMSE) for

each peak k ¼ 1; . . . ; n [in percent]:

RRMSEk , 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I

XI

l¼1

ðnk � n̂nlkÞ
2

n2k

vuut ; ð48Þ

where I is the number of Monte-Carlo runs (we used

1000 here), nk denotes the relevant parameter and n̂nlk is

its estimate obtained in the lth run.
Consider a data sequence consisting of two expo-
nentially damped sinusoids of which only one (peak 1) is

of interest. The two components have the following true

parameter values (where au stands for amplitude units):

x1 ¼ 20Hz; x2 ¼ varied;

a1 ¼ 10Hz; a2 ¼ 10Hz;

q1 ¼ 20au; q2 ¼ 320au:

The sampling frequency ðfsÞ is 1 kHz and the number of

data points N is 512. Unless otherwise specified, the

noise standard deviation used in these simulations ðrÞ is
5 and the frequency of peak 2 ðx2Þ is 100Hz.

Throughout these simulations we consider two dif-

ferent frequency intervals. The first interval (Interval I)
is small compared to N . The lower and upper frequency

bounds (corresponding to k1 and kM ) are set to 10 and

29Hz, respectively. This interval was empirically found

to be optimal for ERF-HSVD and it corresponds to

about 1
50

of the total number of data samples N
(i.e., M ¼ 11 and S ¼ 3 which satisfies Eqs. (18) and

(23)). The transformation between k and frequency f in

Hz is given by Eq. (49); note that k is periodic in the
same sense as the frequency:

k6
N
2

) f ¼ kfs
N

;

k >
N
2

) f ¼ �ðN � kÞfs
N

:

ð49Þ

The second interval considered (Interval II) is relatively

large compared to N . The lower and upper frequency

bounds are set to )141 and 78Hz, respectively. This

region was empirically found to be well suited for SELF-

SVD and it corresponds to about 1
5
of the total number

of data samples (i.e., M ¼ 113 and S ¼ 37). The fre-
quency bounds are preferably chosen so that as much as

possible of the tails of the peak(s) of interest are in-

cluded but without including nuisance peaks. If there is

a ‘‘spectral gap’’ (meaning an interval including only

noise with low spectral energy) between the region of

interest and nuisance peaks, then this ‘‘gap’’ might be

included in order to increase the estimation accuracy

depending on whether the focus lies on parameter esti-
mation accuracy or on computational simplicity. Later

on we will show numerically that SELF-SVD, in con-

trast to ERF-HSVD, is not particularly sensitive to the

choice of frequency interval. The RRMSEs Eq. (48) for

the three parameters of interest (jq1j, x1, a1) corre-

sponding to the two frequency intervals are shown in

Figs. 1–3 for increasing noise standard deviation. In

these figures, we see that there is a severe increase in the
RRMSEs for HSVD when the signal is buried in heavy

noise (i.e., a noise standard deviation above about 20).

The reason for this was the occurrence of a noise peak,

somewhere in the spectrum, with higher amplitude than



Fig. 2. Frequency RRMSEs for peak 1 in the two-peak example: (a) Interval I; (b) Interval II.

Fig. 3. Damping RRMSEs for peak 1 in the two-peak example: (a) Interval I; (b) Interval II.

Fig. 1. Amplitude RRMSEs for peak 1 in the two-peak example: (a) Interval I; (b) Interval II.
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peak 1 which led to a false peak estimate. This clearly

motivates the use of a frequency selective method

instead of a standard time-domain SVD method.
For data with few peaks a short FIR filter can be

used for the amplitude estimation step in SELF-SVD

(as described in Step 4). For more complex data the
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selection of P becomes a compromise between compu-
tational speed and estimation accuracy. Here we choose

P ¼ dN=100e. The method is not particularly sensitive to

the choice of P , but a short filter length results in re-

duced simulation times.

The computational speed of the two frequency se-

lective methods is much superior to that of HSVD.

Table 1 shows the required number of flops to perform

one simulation run of each method. The magnitude of
these values is of course dependent on the size of the

frequency interval of interest, the number of peaks and

the total number of data samples.

Another important aspect to be studied concerns the

influence of a nuisance peak. In the following simula-

tions the frequency separation between peak 1 and peak

2 is varied from 20 to 200Hz. For small peak separa-

tions, peak 2 is partly included in the original Interval II.
To avoid this the upper bound is modified in this par-

ticular case so that Interval II stretches from )141 to

39Hz instead. The results for the amplitude estimates

are shown in Fig. 4. Note that the numerical results on

the estimation accuracy presented in Figs. 1–3 corre-

spond to a peak separation of 80Hz, which appears to

be the optimal separation for ERF-HSVD. Hence the

scenario considered in Figs. 1–3 was the most favorable
one for ERF-HSVD. In other scenarios, ERF-HSVD is

significantly outperformed by SELF-SVD. Indeed, we
Fig. 4. Amplitude RRMSEs of peak 1 as a function of the frequency separat

(b) Interval II (modified).

Table 1

Required number of flops for the three methods for Interval I and

Interval II

Method Flops

Interval I Interval II

SELF-SVD 7:2� 105 3:3� 107

ERF-HSVD 7:4� 104 8:1� 106

HSVD 7:4� 108 7:4� 108
can see from Fig. 4 that SELF-SVD gives satisfying
parameter estimates even when the interference from the

out of bound component is strong, whereas the pa-

rameter estimates of ERF-HSVD are severely affected

by the nuisance peak. The influence of nuisance peaks

cannot be disregarded in practical NMR applications.

Hence ERF-HSVD may be a poor choice for such ap-

plications.

Finally, as we pointed out previously, it is important
to show how the choice of frequency interval affects the

resulting parameter estimates. In the 3D surface plots in

Fig. 5 k1 is varied from )22 to 8 ()43 to 16Hz) and kM is

varied from 12 to 42 (23 to 82Hz). As can be seen, ERF-

HSVD gives satisfactory performance only if the fre-

quency interval is ‘‘suitably chosen.’’ Since usually this is

not possible the concluding remark is that SELF-SVD

outperforms ERF-HSVD in terms of robustness.

3.2. Real-life data

In this subsection we test our SELF-SVD method on

in vitro data. The data set is taken from a standard GE

spectroscopic phantom with a low-concentration addi-

tional GABA solution. The phantom contains 12.5mM

NAA, 10.0mM Cr, 3.0mM Ch, 7.5mM mI, 12.5mM
Glu, 5mM lactate, and 0.5mM GABA. The spectral

bandwidth is 2500Hz and N is 1536. A FFT spectrum of

the data along with the selected lower and upper fre-

quency bounds are shown in Fig. 6. We assume that we

are specifically interested in estimating the parameters of

the choline peak which is located at about )50Hz (see

Fig. 6a).

The selected frequency interval for SELF-SVD and
ERF-HSVD is presented in Fig. 6b. The lower and upper

frequency bounds (corresponding to k1 and kM ) are set to
about )60 and )42Hz, respectively. This interval corre-

sponds to 1
128

of the total number of data samples N
ion between peak 1 and peak 2 in the two-peak example: (a) Interval I;



Fig. 5. Amplitude RRMSEs of peak 1 as a function of the lower and upper bounds (k1, respectively, kM ) in the two-peak example: (a) SELF-SVD; (b)

ERF-HSVD.

Fig. 6. Magnitude spectrum of in-vitro data and zoom of the choline peak: (a) selected peak of interest; (b) considered frequency interval.
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(i.e., M ¼ 12 and S ¼ 4). Here we choose P ¼ dN=200e
for the amplitude estimation step in SELF-SVD.

The estimates of the three parameters (x, a, jqj) are
shown in Table 2. Assuming that the noise level is fairly

low in this data the results of HSVD are here considered

as ‘‘true values’’ since the exact parameters are unknown

in this case. As can be seen from the table the estimates

obtained with SELF-SVD are (much) closer to the

HSVD estimates than those given by ERF-HSVD. In

fact, the frequency and amplitude estimates obtained
with HSVD and SELF-SVD are almost identical. In

addition, the last column of the table shows the required
Table 2

Parameter estimates of the choline peak in the in vitro data for the

three methods, and the required number of flops

Method Freq. ðxÞ Damp ðaÞ Ampl jqj No. of flops

HSVD )50.3403 7.9011 2:3494� 106 1:9� 1010

SELF-SVD )50.3565 8.2622 2:3634� 106 2:6� 106

ERF-HSVD )49.6796 7.0505 1:8974� 106 2:9� 105
number of flops for computing the parameter estimates.

The difference between the required flops for HSVD and
the other two methods clearly underlines the gain ob-

tained by using a frequency selective approach.
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Appendix A. Proof of (11)

First we write the data vector y as:

y ¼
Xm
l¼1

qlbðklÞ þ �: ðA:1Þ

Next we note that (for p ¼ 1; . . . ; S)

wp
k ½v�kbðkÞ� ¼

XN�1

t¼0

e½�aþiðx�ð2p=NÞkÞ�tei2pkp=N

¼ kp
XN�1

t¼0

e½�aþiðx�ð2p=NÞkÞ�ðt�pÞ

¼ kp½v�kbðkÞ�þ kp

�
Xp�1

t¼0

kt�pe�i2pkðt�pÞ=N

"
�

XNþp�1

t¼N

kt�pe�i2pkðt�pÞ=N

#

¼ kp½v�kbðkÞ�þ kp
Xp

l¼1

k�lei2pkl=N
�

� kN�lei2pkl=N
�

¼ kp½v�kbðkÞ�þ
Xp

l¼1

kp�lð1� kN Þwl
k: ðA:2Þ

Let (for p ¼ 1; . . . ; S)

c�pðkÞ ¼ ð1� kN Þ kp�1 � � � k 1 0 � � � 0
� �

ðS � 1Þ: ðA:3Þ

Using this notation we can rewrite Eq. (A.2) in the

following more compact form (for p ¼ 1; . . . ; S):

wp
k ½v�kbðkÞ� ¼ kp½v�kbðkÞ� þ c�pðkÞuk ðA:4Þ

or, equivalently,

uk½v�kbðkÞ� ¼ aðkÞ½v�kbðkÞ� þ
c�1ðkÞ
..
.

c�SðkÞ

2
64

3
75uk: ðA:5Þ

From Eqs. (A.1) and (A.5) it follows that:

ukYk ¼
Xm
l¼1

qluk½v�kbðklÞ� þ ukek

¼ aðk1Þ . . . aðkmÞ½ �
q1v

�
kbðk1Þ
..
.

qmv
�
kbðkmÞ

2
64

3
75

þ
Xm
l¼1

ql

c�1ðklÞ
..
.

c�SðklÞ

2
64

3
75

8><
>:

9>=
>;uk þ ukek; ðA:6Þ

which proves Eq. (11) (note that the definition of the

matrix C in Eq. (11) follows from Eq. (A.6), but as we

already said this definition is of no interest for the

present discussion).
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